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Abstract

We prove upper bounds on the expected length and volume distortion of deep residual
neural networks, extending the work of [HJR21] for deep fully-connected neural networks. Our
results confirm experimental findings suggesting that length distortion decreases slightly with
the number of residual modules.

1 Introduction

Empirical findings suggest that deep neural networks are more powerful than shallow ones.
Recent theoretical work seeks to understand why. One approach studies the complexity of
neural networks as they vary in depth. For example, it has been shown that deeper neural
networks can express more complex functions (e.g., [BS14, CSS15, MPCB14]), an intuitive
explanation for why deeper networks are preferable. At the same time, several theoretical
findings have demonstrated that deeper networks do not necessarily express more complex
functions on average (e.g., [HR19, HJR21, PKL19]), suggesting that the situation is more
nuanced.

But even as we gain a more precise understanding of the complexity of neural networks,
existing analysis focuses primarily on fully-connected neural networks. However, as deep neural
networks used in practice often have more complex architectures, it is important to build a
theoretical understanding of these other settings.

In this thesis, we study the complexity of residual neural networks (ResNets), a type of
architecture widely used in practice. The measure of complexity we focus on is length distortion:
how much does a neural network typically distort the length of an input curve? (See e.g., [PT21,
RPK+17, HJR21].) Recent work demonstrates that, at initialization, length distortion in fully-
connected networks does not increase with depth, and actually slightly decreases [HJR21].

We extend the results of [HJR21] for length distortion to residual networks. We provide
theoretical bounds that closely match experimental findings in [HJR21] suggesting that length
distortion in residual networks also decreases slightly with depth. We also obtain bounds on
the distortion of higher-dimensional manifolds.

We begin, in this section, by stating bounds on expected length distortion both in the case
of fully-connected neural networks (Theorem 1) and residual neural networks (Theorem 2). We
prove these theorems in Section 2. In Section 3, we state and prove generalizations of these
results for higher-dimensional manifolds.
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1.1 Definitions and main results

We now define both the fully-connected neural network and the residual neural network. We
then state the existing result of [HJR21] for the expected length distortion of fully-connected
networks, and then state our new corresponding result for residual networks.

Fix L ≥ 1, n0, · · · , nL ≥ 1, σ : R → R. Then a depth L fully-connected neural network
N with input dimension n0, output dimension nL, hidden layer widths n1, · · · , nL−1, and
activation function σ is any function of the form

x ∈ Rn0 7→ N (x) ∈ RnL ,

where

N (ℓ+1)(x) :=

{
W (1)x+ b(1) ℓ = 0

W (ℓ+1)σ(N (ℓ)(x)) + b(ℓ+1) l ≥ 1

and N = N (L). For our purposes, we will always take σ to be the ReLU activation function
ReLU(x) = max(0, x).

The weights and biases are given by standard He initialization if W
(ℓ)
ij , b

(ℓ)
j are independent

Gaussian variables satisfying

W
(ℓ)
ij ∼ G(0, 2/nℓ−1), b

(ℓ)
j ∼ G(0, Cb) (1)

for any fixed constant Cb > 0 and where G(µ, σ2) denotes a Gaussian with mean 0 and variance
σ2.

For a curve M , we let N (M) denote the image of M under N . Let len(·) denote the length
of a curve. We may now state a simplified version of the upper bound given in [HJR21] for
standard neural networks.

Theorem 1 (Length distortion in deep fully-connected networks). Consider a fully-connected
network N of depth L, input dimension n0, and output dimension nL, with weights given by
He normal initialization. Consider a curve M of unit length. Then

E[len(N (M))2] ≤ nL

n0
. (2)

This gives upper bounds on both E[len(N (M))] and Var[len(N (M))] since

E[X] ≤
(
E[X2]

)1/2
Var[X] ≤ E[X2] (3)

for any random variable X.
Define a residual neural network N res

L with residual modulesN1, · · · ,NL and scales η1, · · · , ηL
by the recursion

N res
0 (x) = x, N res

ℓ (x) = N res
ℓ−1(x) + ηℓNℓ(N res

ℓ−1(x)), ℓ = 1, · · · , L. (4)

For our purposes, N1, · · · ,NL, and N res
L each have a shared input and output dimension n.

In this thesis, we show the corresponding version of Theorem 1 for residual networks.

Theorem 2 (Length distortion in deep residual networks). Consider a residual ReLU network
N res

L with residual modules N1, · · · ,NL (each with weights given by He normal initialization)
and scales η1, · · · , ηL. Consider a curve M of unit length. Then

E[len(N (M))2] ≤
L∏

ℓ=1

1 + η2
ℓ . (5)
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2 Length distortion

In this section, we prove Theorem 1 and Theorem 2. We begin by introducing a general setup
used in [HJR21] for studying length distortion. The setup applies for both fully-connected and
residual networks (and indeed other network architectures), and relies on understanding the
network’s Jacobian.

Consider a pathM of unit length, and suppose we have a smooth unit speed parametrization
M = γ([0, 1]) with

γ : R → Rn, γ(t) = (γ1(t), · · · , γn(t)). (6)

Then the mapping
Γ := N ◦ γ, Γ : R → Rn (7)

gives a parametrization of the curve N (M), and we have

len(N (M)) =

∫ 1

0

∥Γ′(t)∥ dt. (8)

Now let Jx denote the Jacobian of the map x 7→ N (M). We recall the following lemma from
[HJR21].

Lemma 3 (Lemma C.1 of [HJR21]). We have

E[len(N (M))2] ≤
∫ 1

0

E[∥Jγ(t)γ
′(t)∥2] dt. (9)

We are therefore interested in understanding the distribution of

∥Jxu∥ (10)

for x ∈ Rn and a unit vector u ∈ Rn. Of course, this distribution depends on the network
architecture. In the next section, we present [HJR21]’s proof of Theorem 1, which utilizes the
explicit distribution of (10) for fully-connected neural networks. In Section 2.2, we extend this
analysis to prove Theorem 2.

2.1 Length distortion in deep fully-connected networks

In this section, we use the analysis in [HJR21] to prove Theorem 1. [HJR21] go further,
providing bounds on all moments of len(N (M)), but we focus here on the second moment.

Consider a fully-connected network N of depth L, input dimension n0, and output dimen-
sion nL, with weights given by standard He initialization. Continuing with the introduced
notation, let Jx be the Jacobian of the map x → N (x). The following result gives us the exact
distribution of ∥Jxu∥.
Proposition 4. For any x ∈ Rn0 and any unit vector u ∈ Rn0 , ∥Jxu∥2 is equal in distribution
to a product of independent scaled chi-squared random variables:

∥Jxu∥2
d
=

nL

n0

(
L−1∏
ℓ=1

2

nℓ
χBin(nℓ,1/2)

)
· 1

nL
χ2
nL

, (11)

where Bin(nℓ, 1/2) are independent binomial distributions determining the number of degrees
of freedom.
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Theorem 1 follows shortly: We have

E[len(N (M))2] ≤
∫ 1

0

E[∥Jγ(t)γ
′(t)∥2] dt = E[∥Jxu∥2], (12)

where we applied Lemma 3 and then observed from Proposition 4 that E[∥Jxu∥2] is the same
for all choices of x and unit vector u. Then, recalling that E[χ2

k] = k, Theorem 1 follows
immediately, as

E[∥Jxu∥2] =
nL

n0

(
L−1∏
ℓ=1

2

nℓ
E[χBin(nℓ,1/2)]

)
· 1

nL
E[χ2

nL
] =

nL

n0
. (13)

We spend the remainder of the section deriving Proposition 4. The observations in this
derivation will also be useful for our analysis of residual networks.

For fixed x, Jx is equal in distribution to a product of independent random matrices

Jx
d
= AW (L)D(L−1)W (L−1) · · ·D(1)W (1), (14)

where A is a diagonal matrix with independent diagonal entries that are ±1 with equal prob-
ability, D(ℓ) are diagonal matrices with diagonal entries that are independent Bernoulli(1/2)
random variables, and each W (ℓ) is determined by standard He initialization

W
(ℓ)
ij ∼ G(0, 2/nℓ−1). (15)

Then we have

∥Jxu∥
d
= ∥W (L)D(L−1)W (L−1) · · ·D(1)W (1)u∥ (16)

d
= ∥W (L)D(L−1)W (L−1) · · ·D(2)W (2)u(1)∥∥D(1)W (1)u∥, (17)

where u(1) = D(1)W (1)u

∥D(1)W (1)u∥ . It is a standard fact that for a matrix W with i.i.d. Gaussian entries,

Wu is independent of u for any unit vector u and equal in distribution to Wv for any unit
vector v. Successively applying this fact, we find

∥Jxu∥
d
= ∥W (L)u∥∥D(L−1)W (L−1)u∥ · · · ∥D(1)W (1)u∥. (18)

The result follows by observing

∥D(ℓ)W (ℓ)u∥ d
=

2

nℓ−1
χ2
Bin(nℓ,1/2)

(19)

∥W (L)u∥ d
=

2

nL−1
χ2
Bin(nL,1/2). (20)

2.2 Length distortion in deep residual networks

We now prove Theorem 2, again using the bound in Lemma 3.
Recall that a residual network N res

L with residual modules N1, · · · ,NL and scales η1, · · · , ηL
is recursively defined by

N res
0 (x) = x, N res

ℓ (x) = N res
ℓ−1(x) + ηℓNℓ(N res

ℓ−1(x)), ℓ = 1, · · · , L. (21)

For our purposes, N1, · · · ,NL, and N res
L each have a shared input and output dimension n.

Also suppose that N1, · · · ,NL each have weights given by standard He initialization.
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Once again, consider a path M of unit length parametrized by M = γ([0, 1]) with

γ : R → Rn, γ(t) = (γ1(t), · · · , γn(t)) (22)

so that the mapping
Γ := N res

L ◦ γ, Γ : R → Rn (23)

gives a parametrization of the curve N res
L (M). Let Jres

L,x denote the Jacobian of the map
x 7→ N res

L (M). Again, restating Lemma 3,

E[len(N res
L (M))2] ≤

∫ 1

0

E[∥Jres
L,γ(t)γ

′(t)∥2] dt. (24)

We begin by rewriting Jres
L,x in terms of the Jacobians of fully-connected neural networks, which

we examined in the previous section.
Define Jres

ℓ,x to be the Jacobian of the map x 7→ N res
ℓ (x) and Jℓ,x to be the Jacobian of the

map x 7→ Nℓ(x). Then by the chain rule,

Jres
ℓ,x = (I + ηℓJℓ,Nres

ℓ−1
(x))J

res
ℓ−1,x. (25)

Thus,
Jres
L,x = (I + ηLJL,Nres

L−1
(x))(I + ηL−1JL−1,Nres

L−2
(x)) · · · (I + η1J1,Nres

0 (x)). (26)

In the remainder of the section, we consider a fixed x; so for convenience, we abbreviate
Jℓ,Nres

ℓ−1
(x) to just Jℓ. Using this notation, we expand (26) to get

Jres
L,x =

L∑
k=0

∑
L≥ℓ1>···>ℓk≥1

ηℓ1 · · · ηℓkJℓ1 · · · Jℓk . (27)

We now state the distribution of Jℓ1 · · · Jℓk . Note that the Jacobians Jℓ are independent.
Therefore, we get the following extension of (14):

Jℓ1 · · · Jℓk

d
= A

k∏
i=1

W
(Lℓi

)

ℓi
D

(Lℓi
−1)

ℓi
W

(Lℓi
−1)

ℓi
· · ·D(1)

ℓi
W

(1)
ℓi

, (28)

where all of the matrices in the product are independent, and where A is a diagonal matrix with
independent diagonal entries that are ±1 with equal probability, D

(ℓ)
ℓi

are diagonal matrices
with diagonal entries that are independent Bernoulli(1/2) random variables, and we recall that

each W
(ℓ)
ℓi

is determined by standard He initialization. As in the previous section, we see that

E[len(N res
L (M))2] ≤

∫ 1

0

E[∥Jres
γ(t)γ

′(t)∥2] dt = E[∥Jres
ℓ,x u∥2], (29)

where we applied Lemma 3, and noted that (27) and (28) imply E[∥Jres
ℓ,x u∥2] is the same for all

choices of x and unit vector u.
We now turn to calculating E[∥Jres

ℓ,x u∥2]. We use the expansion in (27) to obtain

E
[
∥Jres

ℓ,x u∥2
]
= E

[∑〈
ηℓ1 · · · ηℓkJℓ1 · · · Jℓku, ηℓ′1 · · · ηℓ′kJℓ′1

· · · Jℓ′
k′
u
〉]

(30)

=
∑

(ηℓ1 · · · ηℓk )(ηℓ′1 · · · ηℓ′k )E
[〈

Jℓ1 · · · Jℓku, Jℓ′1
· · · Jℓ′

k′
u
〉]

, (31)

where the sums each range over 0 ≤ k, k′ ≤ L and L ≥ ℓ1 > · · · > ℓk ≥ 1, L ≥ ℓ′1 > · · · , >
ℓ′k′ ≥ 1. In Proposition 5 and Proposition 6, we calculate the expectations of the above inner
products in two cases: (ℓ1, · · · , ℓk) = (ℓ′1, · · · , ℓ′k′) and (ℓ1, · · · , ℓk) ̸= (ℓ′1, · · · , ℓ′k′).
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Proposition 5. For 0 ≤ k ≤ L and L ≥ ℓ1 > · · · > ℓk ≥ 1,

E [⟨Jℓ1 · · · Jℓku, Jℓ1 · · · Jℓku⟩] = 1. (32)

Proof. We have from (28) that

Jℓ1 · · · Jℓku
d
= A

(
k∏

i=1

W
(Lℓi

)

ℓi
D

(Lℓi
−1)

ℓi
W

(Lℓi
−1)

ℓi
· · ·D(1)

ℓi
W

(1)
ℓi

)
u.

Then by the same logic used to obtain (18), we may use the rotational invariance of the matrices

W
(ℓ)
ℓi

to find that ∥Jℓ1 · · · Jℓku∥ is equal to the product of independent random variables

∥Jℓ1 · · · Jℓku∥
d
=

k∏
i=1

∥∥∥W (Lℓi
)

ℓi
u
∥∥∥ ∥∥∥D(Lℓi

−1)

ℓi
W

(Lℓi
−1)

ℓi
u
∥∥∥ · · ·∥∥∥D(1)

ℓi
W

(1)
ℓi

u
∥∥∥

d
=

k∏
i=1

∥Jℓiu∥.

Thus,

E
[
∥Jℓ1 · · · Jℓku∥

2] = k∏
i=1

E[∥Jℓiu∥
2]. (33)

Finally, recalling Proposition 4 and noting that each residual module has equal input and
output dimension, we have

E[∥Jℓiu∥
2] = 1, (34)

from which the result follows.

Proposition 6. For 0 ≤ k, k′ ≤ L and L ≥ ℓ1 > · · · > ℓk ≥ 1, L ≥ ℓ′1 > · · · , > ℓ′k′ ≥ 1, if
(ℓ1, · · · , ℓk) ̸= (ℓ′1, · · · , ℓ′k′), then

E
[〈

Jℓ1 · · · Jℓku, Jℓ′1
· · · Jℓ′

k′
u
〉]

= 0. (35)

Proof. There exists some index i that is among either {ℓ1, · · · , ℓk} or {ℓ′1, · · · , ℓ′k′} but not

both. Assume without loss of generality that i ∈ {ℓ1, · · · , ℓk}. Then Ji
d
= −Ji. (This can be

seen, for example, by observing that W
(Li)
i

d
= −W

(Li)
i .)

Because Ji and Jj are independent for all i ̸= j, we have that〈
Jℓ1 · · · Ji · · · Jℓku, Jℓ′1

· · · Jℓ′
k′
u
〉

d
= −

〈
Jℓ1 · · · (−Ji) · · · Jℓku, Jℓ′1

· · · Jℓ′
k′

〉
d
= −

〈
Jℓ1 · · · Ji · · · Jℓku, Jℓ′1

· · · Jℓ′
k′
u
〉
.

The result follows.

Applying Proposition 5 and Proposition 6 to (31), we have

E
[
∥Jres

ℓ,x u∥2
]
=
∑

(ηℓ1 · · · ηℓk )(ηℓ′1 · · · ηℓ′k )E
[〈

Jℓ1 · · · Jℓku, Jℓ′1
· · · Jℓ′

k′
u
〉]

(36)

=

L∑
k=0

∑
L≥ℓ1>···>ℓk≥1

η2
ℓ1 · · · η

2
ℓk (37)

=

L∏
ℓ=1

(1 + η2
ℓ ), (38)

which completes the proof of Theorem 2.
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Figure 1: We compare our theoretical upper bound and empirical estimates (from [HJR21]) for
expected length distortion E[len(N (M))] when η1 = · · · = ηL = 1

L . Our upper bound appears to
be fairly tight.

2.3 Comparison with experimental results

We consider the special case when η1 = · · · = ηL = 1
L

and compare our theoretical bounds
with empirical findings given in [HJR21]. In this case, Theorem 2 gives

E[len(N (M))] ≤
(
E[len(N (M))2]

)1/2 ≤
(
1 +

1

L2

)L/2

. (39)

We plot our theoretical upper bounds alongside the empirical results in Figure 1.

3 Volume distortion

In the previous chapter, we considered the expected length distortion of fully-connected and
residual networks. It is natural to further study the effect of neural networks on higher-
dimensional manifolds. In this section, we consider unit volume smooth manifolds M of any
dimension and bound the expected volume of its image. This gives the expected volume distor-
tion. Below, we state a result of [HJR21] for fully-connected networks, as well as a new bound
we obtain for residual networks.

Theorem 7 (Volume distortion in deep fully-connected networks). Consider a fully-connected
neural network N of depth L, input dimension n0, output dimension nL, and hidden layer
widths n1, · · · , nL−1, with weights given by standard He initialization. Consider a d−dimensional
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input M of unit volume. Then

E[vold(N (M))2] ≤
(
nL

n0

)d

exp

[
−

(
d

2

)
L∑

ℓ=1

n−1
ℓ

]
. (40)

Theorem 8 (Volume distortion in deep residual networks). Consider a residual neural network
N res

L with residual modules N1, · · · ,NL (each with weights given by standard He initialization)
and scales η1, · · · , ηL such that N res

L has a total of L̃ layers (i.e., the sum of the depths of
N1, · · · ,NL equals L̃). Consider a d−dimensional input M of unit volume. Then there exists
a universal constant c > 0 such that for any 0 < ϵ < 1

2
, if the width of every layer of N res

L is

at least cd2L̃
ϵ

, then

E[vold(N res
L (M))2] ≤ (1 + ϵ)

L∏
ℓ=1

(1 + ηℓ)
2d + (1− ηℓ)

2d

2
. (41)

We observe that the bound in Theorem 8 depends on N res
L having a width that is large in

terms of the squared dimension of the manifold and the total number of layers. In Section 3.2,
we discuss how this dependency arises and whether it is necessary.

As for length distortion, we begin by introducing a general strategy for studying volume
distortion. Consider a smooth d−dimensional manifold M where d is at most the minimum
width of a neural network N . (Otherwise, N (M) would have fewer than d dimensions.) Let Jx

be the Jacobian of the map x → N (x). We employ the following generalization of Lemma 3.

E[(N (M))2] ≤
∫
M

E[det(ΠTxMJT
x JxΠTxM )] vold(dx), (42)

where ΠTxM : Rn0 → TxM is the orthogonal projection onto the tangent space of x with
respect to M .

From the Gram identity,

det(ΠTxMJT
x JxΠTxM ) = ∥Jxe1 ∧ · · · ∧ Jxed∥2, (43)

where e1, · · · , ed is an orthonormal basis of the tangent space of M with respect to x. We recall
that ∧ denotes the exterior product and that ∥v1 ∧ · · · ∧ vd∥ gives the d−dimensional volume
of the parallelepiped formed by v1, · · · , vd. It suffices to bound

E
[
∥Jxe1 ∧ · · · ∧ Jxed∥2

]
. (44)

In Section 3.1, we sketch the proof of Theorem 7. In Section 3.2, we prove Theorem 8.

3.1 Volume distortion in deep fully-connected networks

We present the key ideas to prove Theorem 7, which are almost identical to that of Theorem 1.
Consider a fully-connected network N of depth L, input dimension n0, and output dimen-

sion nL, with weights given by standard He initialization. Let Jx denote the Jacobian of the
map x → N (x). We would like to bound

E
[
∥Jxe1 ∧ · · · ∧ Jxed∥2

]
(45)

where e1, · · · , ed is an orthonormal basis of the tangent space of M with respect to x.
As for length distortion, we may determine the distribution of E

[
∥Jxe1 ∧ · · · ∧ Jxed∥2

]
.
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Proposition 9. For any x and orthonormal unit vectors e1, · · · , ed,

∥Jxe1 ∧ · · · ∧ Jxed∥2

is equal in distribution to the product of independent chi-squared random variables(
nL

n0

)d
(

L−1∏
ℓ=1

d∏
j=1

2

nℓ
χBin(nℓ−j+1,1/2)

)
·

d∏
j=1

1

nL
χ2
nL−j+1 (46)

where Bin(nℓ, 1/2) are independent binomial distributions determining the number of degrees
of freedom.

Theorem 7 follows directly. The key idea to proving Proposition 9 is the same as in the
two-dimensional case (see (18)). We may write

∥Jxe1 ∧ · · · ∧ Jxed∥
d
=
∥∥∥W (L)e1 ∧ · · · ∧W (L)ed

∥∥∥ L−1∏
ℓ=1

∥∥∥D(ℓ)W (ℓ)e1 ∧ · · · ∧D(ℓ)W (ℓ)ed

∥∥∥ , (47)

the product of independent random variables. This is possible because for W with i.i.d. Gaus-
sian entries, Wu1 ∧ · · · ∧ Wud is independent of u1, · · · , ud for any orthonormal unit vectors
u1, · · · , ud and equal in distribution to Wv1 ∧ · · · ∧ Wvd for any orthonormal unit vectors
v1, · · · , vd.

3.2 Volume distortion in deep residual networks

We now prove Theorem 8. Again, consider a residual network N res
L with residual modules

N1, · · · ,NL and scales η1, · · · , ηL, and let Jres
ℓ,x denote the Jacobian of the map x → N res

L (x)
and Jℓ the Jacobian of the map x → Nℓ(x).

Recall from (27) that

Jres
L,x =

L∑
k=0

∑
L≥ℓ1>···>ℓk≥1

ηℓ1 · · · ηℓkJℓ1 · · · Jℓk . (48)

We introduce the following additional notation for this section. Let 2[L] denote the power set of
[L] = {1, 2, · · · , L}. Then for ℓ = {ℓ1, · · · , ℓk} ∈ 2[L] with ℓ1 > · · · > ℓk, we let ηℓ = ηℓ1 · · · ηℓk
and Jℓ = Jℓ1 · · · Jℓk . With this notation, we rewrite (48) as

Jres
L,x =

∑
ℓ∈2[L]

ηℓJℓ. (49)

We now bound, for x ∈ M and e1, · · · , ed an orthonormal basis of the tangent space of M at
x,

E
[
∥Jres

L,xe1 ∧ · · · ∧ Jres
L,xed∥2

]
= E

∥∥∥∥∥∥
d∧

i=1

 ∑
ℓ∈2[L]

ηℓJℓ

 ei

∥∥∥∥∥∥
2 . (50)

We expand this to get

∑
ℓ1,··· ,ℓd∈2[L]

∑
ℓ′1,··· ,ℓ

′
d
∈2[L]

(
d∏

i=1

ηℓi

)(
d∏

i=1

ηℓ′i

)
E

[〈
d∧

i=1

Jℓiei,
d∧

i=1

Jℓ′i
ei

〉]
(51)

The following three results address the expectations of the inner products in (51).
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Proposition 10. There exists a universal constant c such that for any 0 < ϵ < 1
2
, if the width

of every layer of N res
L is at least cd2L̃

ϵ
, then for any ℓ1, · · · , ℓd ∈ 2[L],

E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓiei

〉]
≤ 1 + ϵ. (52)

We recall Theorem 5.1 in [HJR21] as a lemma.

Lemma 11. Let Jx be the Jacobian of a fully-connected network N with input dimension n0,
output dimension nL, and hidden layer widths n1, · · · , nL−1, with weights and biases given by
standard He intialization. Then there exist univeral constants c1, c2 > 0 such that if m <
c1 min{n1, · · · , nL−1}, then

E [∥Jxu∥m] ≤
(
nL

n0

)m/2

exp

[
c2m

2
L∑

ℓ=1

n−1
ℓ

]
. (53)

Proof of Proposition 10. We use the näıve bound〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓiei

〉
≤

d∏
i=1

∥Jℓiei∥
2 (54)

where u is any unit vector. Using Lemma 11,

E

[
d∏

i=1

∥Jℓiei∥
2

]
≤ E

[
L∏

ℓ=1

∥Jℓu∥2d
]
≤ exp

[
L∑

ℓ=1

4c2d
2Lℓ

cd2L̃ 1
ϵ

]
(55)

where Lℓ is the number of layers of Nℓ. Taking c = 8c2,

exp

[
L∑

ℓ=1

4c2d
2Lℓ

cd2L̃ 1
ϵ

]
≤ exp

[ ϵ
2

]
≤ 1 + ϵ, (56)

as desired, where the last inequality follows because ϵ < 1/2.

Proposition 10 may be extended to more general inner products.

Corollary 12. There exists a universal constant c such that for any 0 < ϵ < 1
2
, if the width

of every layer of N res
L is at least cd2L̃

ϵ
, then for any ℓ1, · · · , ℓd ∈ 2[L] and ℓ′1, · · · , ℓ′d ∈ 2[L],

E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉]
≤ 1 + ϵ. (57)

Proof. Taking c = 8c2 as in Proposition 10, we have

E

[〈
d∧

i=1

Jℓiei,
d∧

i=1

Jℓ′i
ei

〉]
≤ E

〈 d∧
i=1

Jℓiei,
d∧

i=1

Jℓiei

〉1/2〈 d∧
i=1

Jℓ′i
ei,

d∧
i=1

Jℓ′i
ei

〉1/2
 (58)

≤

(
E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓiei

〉]
E

[〈
d∧

i=1

Jℓ′i
ei,

d∧
i=1

Jℓ′i
ei

〉])1/2

(59)

≤ 1 + ϵ (60)

where (58) and (59) each follow from Cauchy-Schwarz and (60) follows from Proposition 10.
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We now show how in certain cases, the expected inner product is zero.

Proposition 13. For ℓ1, · · · , ℓd ∈ 2[L] and ℓ′1, · · · , ℓ′d ∈ 2[L], if there exists an index i such
that i appears in an odd number of ℓ1, · · · , ℓd and ℓ′1, · · · , ℓ′d ∈ 2[L], then

E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉]
= 0. (61)

Proof. The proof is nearly identical to that of Proposition 6. Because Ji
d
= −Ji and is inde-

pendent of all Jj where i ̸= j, we see that〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉
d
= −

〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉
, (62)

where we used that Ji appears an odd number of times among Jℓ1 , · · · , Jℓd , Jℓ′1
, · · · , Jℓ′

d
. The

result follows.

Theorem 7 follows shortly. Applying Proposition 13 to (51),

∑
ℓ1,··· ,ℓd∈2[L]

∑
ℓ′1,··· ,ℓ

′
d
∈2[L]

(
d∏

i=1

ηℓi

)(
d∏

i=1

ηℓ′i

)
E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉]
, (63)

viewed as a polynomial in η1, · · · , ηL, vanishes at all terms where some ηℓ is raised to an odd
power. The remaining terms are found in

L∏
ℓ=1

((
2d

0

)
+

(
2d

2

)
η2
ℓ +

(
2d

4

)
η4
ℓ · · ·+

(
2d

2d

)
η2d
ℓ

)
=

L∏
ℓ=1

(1 + ηℓ)
2d + (1− ηℓ)

2d

2
. (64)

The result follows after applying the bound in Corollary 12.

Remark 14. The bounds used to obtain Proposition 10 and Corollary 12 are very näıve. Future
work can study

E

[〈
d∧

i=1

Jℓiei,

d∧
i=1

Jℓ′i
ei

〉]
(65)

more carefully. We do, however, expect there to remain some dependency on d, the number
of layers, and the layer widths. This is because the inner products of interest (65) can depend
on the higher moments of ∥Jℓu∥, requiring the use of bounds like Lemma 11 that contain these
dependencies.

Let us consider one example, briefly. We have

E [⟨J2J1e1 ∧ J3J1e2, J2J1e1 ∧ J3J1e2⟩] (66)

=E [⟨J2u1 ∧ J3u2, J2u1 ∧ J3u2⟩]E[∥J1e1∥∥J1e2∥], (67)

where u1 = J1e1
∥J1e1∥

and u2 = J1e2
∥J1e2∥

. The term E[∥J1e1∥∥J1e2∥] has some dependency on the

second moment of ∥J1u∥.
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